Finite Element Modeling of Contact Problems
نویسنده
چکیده
Contact is the principal way load is transferred to a body. The study of stresses and deformations arising due to contact interaction of solid bodies is thus of paramount importance in many engineering applications. In this work, problems involving contact interactions are investigated using finite element modeling. In the first part, a new augmented Lagrangian multiplier method is implemented for the finite element solution of contact problems. In this method, a stabilizing term is added to avoid the instability associated with overconstraining the nonpenetration condition. Numerical examples are presented to show the influence of stabilization term. Furthermore, dependence of error on different parameters is investigated. In the second part, a disc brake is investigated by modeling the disc in an Eulerian framework which requires significantly lower computational time than the more common Lagrangian framework. Thermal stresses in the brake disc are simulated for a single braking operation as well as for repeated braking. The results predict the presence of residual tensile stresses in the circumferential direction which may cause initiation of radial cracks on the disc surface after a few braking cycles. It is also shown that convex bending of the pad is the major cause of the contact pressure concentration in middle of the pad which results in the appearance of a hot band on the disc surface. A multi-objective optimization study is also performed, where the mass of the back plate, the brake energy and the maximum temperature generated on the disc surface during hard braking are optimized. The results indicate that a brake pad with lowest possible stiffness will result in an optimized solution with regards to all three objectives. Finally, an overview of disc brakes and related phenomena is presented in a literature review. In the third part, a lower limb donned in a prosthetic socket is investigated. The contact problem is solved between the socket and the limb while taking friction into consideration to determine the contact pressure and resultant internal stress-strain in the soft tissues. Internal mechanical conditions and interface stresses for three different socket designs are compared. Skin, fat, fascia, muscles, large blood vessels and bones are represented separately, which is novel in this work.
منابع مشابه
Finite Element Simulation of Contact Mechanics of Cancer Cells in Manipulation Based on Atomic Force Microscopy
The theory of contact mechanics deals with stresses and deformations which arise when the surfaces of two solid bodies are brought into contact. In elastic deformation contact occurs over a finite area. A regular method for determining the dimensions of this area is Hertz Contact Model. Appearance of atomic force microscope results in introduction of Contact ...
متن کاملModeling Static Bruising in Apple Fruits: A Comparative Study, Part II: Finite Element Approach
ABSTRACT- Mechanical damage degrades fruit quality in the chain from production to the consumption. Damage is due to static, impact and vibration loads during processes such as harvesting, transportation, sorting and bulk storage. In the present study finite element (FE) models were used to simulate the process of static bruising for apple fruits by contact of the fruit with a hard surface. Thr...
متن کاملNumerical Modeling of Railway Track Supporting System using Finite-Infinite and Thin Layer Elements
The present contribution deals with the numerical modeling of railway track-supporting systems-using coupled finite-infinite elements-to represent the near and distant field stress distribution, and also employing a thin layer interface element to account for the interfacial behavior between sleepers and ballast. To simulate the relative debonding, slipping and crushing at the contact area betw...
متن کاملSignificant Error Propagation in the Finite Difference Solution of Non-Linear Magnetostatic Problems Utilizing Boundary Condition of the Third Kind
This paper poses two magnetostatic problems in cylindrical coordinates with different permeabilities for each region. In the first problem the boundary condition of the second kind is used while in the second one, the boundary condition of the third kind is utilized. These problems are solved using the finite element and finite difference methods. In second problem, the results of the finite di...
متن کاملModeling of Tactile Detection of an Artery in a Soft Tissue by Finite Element Analysis
Nowadays, one of the main problems encountered in minimally invasive surgery and telesurgery is the detection of arteries in tissue. In this study, for the first time, tactile detection of an artery in tissue and distinguishing it from the tumor has been modeled by finite element method. In this modeling, three 2D models of tissue have been created: tissue, tissue including a tumor, and tissue ...
متن کاملNumerical Modeling of a Dual Variational Inequality of Unilateral Contact Problems Using the Mixed Finite Element Method
We study the dual mixed finite element approximation of unilateral contact problems. Based on the dual mixed variational formulation with three unknowns (stress, displacement and the displacement on the contact boundary), the a priori error estimates have been established for both conforming and nonconforming finite element approximations. A Uzawa type iterative algorithm is developed to solve ...
متن کامل